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EVERY ODD PERFECT NUMBER HAS A PRIME FACTOR 
WHICH EXCEEDS 106 

PETER HAGIS, JR. AND GRAEME L. COHEN 

ABSTRACT. It is proved here that every odd perfect number is divisible by a 
prime greater than 106. 

1. INTRODUCTION 

In what follows, a, b, c, ... will be used to represent non-negative integers, with 
primes being symbolized by p, q and r. An element of the (possibly empty) set 
of odd perfect numbers will be denoted by N, so that a(N) = 2N where a is the 
familiar sum of divisors function. The dth cyclotomic polynomial will be symbolized 
by Fd, so that Fp(x) = 1 + x + x2 + * * * + XP-1. If p and m are relatively prime, 
h(p; m) will denote the order of p modulo m. 

According to Theorem 3.4 in [9], 
(1) j(pa) = lJdFd(P), where d I (a + 1) and d > 1. 

From Theorems 94 and 95 in [8], 
(2) q I Fm(p) if and only if m = qbh(p; q). If b > 0, then q 11 Fm(p). If b = 0, then 

q -1 (mod m). 
It follows from (2) that 

(3) if q I Fr(p), then either r = q and p- 1 (mod q) (and q 11 Fr(p)) or q 
1 (mod r); 

(4) if q = 3 or 5 and m > 1 is odd, then q I Fm(p) (in fact, q 11 Fm(p)) if and only 
if m = qb and p 1_ (mod q). 

According to a result due to Bang [1], 
(5) if p is an odd prime and m > 3, then Fm(p) has at least one prime factor q 

such that q 1 (mod m). 
It is well known, and easy to prove, that 

(6) N = paopa, ... pa., where the pi are distinct odd primes, po ao =1 (mod 4), 
and 2 1 ai if i > 0. ( In this, po is called the special prime.) 

In [4], it was proved that at least one of the pi in (6) exceeds 100110. In 1978, 
Condict [3], in his senior thesis at Middlebury College, improved this bound to 
300000, while in 1982 Brandstein [2] announced that at least one of the pi is greater 
than 500000. (To the best of our knowledge, however, Brandstein's announcement 
has never been substantiated by a public proof.) The purpose of the present paper 
is to improve these results by proving the following 
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Theorem. If N is odd and perfect, then N has a prime factor which exceeds 106. 

Our proof will be by contradiction. Thus, we now assume without further explicit 
mention that pi < 106 for every pi in (6), and shall show that this assumption is 
untenable. 

Since N is perfect, and since a is multiplicative, it follows from (1) and (6) that 

(7) 2N = fJ0 u(pai) = f=0 fJd Fd(pi), where d I (ai+1) and d > 1 (with d = 2 
if and only if i = 0). 

We see immediately that the set of pi in (6) is identical with the set of odd prime 
factors of the Fd(pi) in (7). In particular, recalling our assumption we note that 
all of the prime factors of each Fd(pi) must be less than 106. Our proof will hinge 
on the consequence that if r is a prime divisor of ai + 1, then every prime factor of 
Fr(pi) must be less than 106. 

2. ACCEPTABLE VALUES OF Fr (p) 

If p > 2 and r are primes, we shall say that Fr (p) is acceptable if every prime 
divisor of Fr (p) is less than 106. It follows easily from (5) that if r > 500000, 
then Fr(p) is unacceptable for every odd prime p. We shall say that the prime p 
is inadmissible if Fr(p) is unacceptable for every prime r (with r = 2 taken into 
consideration only if it is possible that p is the special prime for N). 

An extensive computer search revealed that if 3 < p < 106 and r > 7, then 
Fr(p) is unacceptable except for the 35 pairs of values of p and r listed in Table 1. 
Details of the search and supporting arguments may be found in an appendix to 
this paper. At the suggestion of a referee, some of these arguments have been 
included in Section 7 of the present paper. The complete appendix appears in [5] 
and is available upon request from the second author. 

3. AN IMPORTANT SET OF PRIMES 

Our objective in this section is to show that N is not divisible by certain "small" 
primes. 

Lemma 1. Let X be the set of primes 

X = {3,5,7,11,13,17,19,23,29,31,37,43,61,127,131,151,1093}. 

If pEX, then ptN. 

The proof proceeds by considering each prime p in X in turn, but in the order 

1093,151,31,127,19,11, 7,23,131,37, 61,13,3,5,29,43,17. 

We assume p I N and find all acceptable values of Fr (p) (with r = 2 being considered 
only if p might be the special prime); from (7), Fr (p) I 2N for at least one acceptable 
Fr (p) and each odd prime divisor of this Fr (p) divides N; from each acceptable 
Fr(p) a single odd prime divisor, say q, is selected and all of the acceptable values 
of Fr (q) are determined. This procedure is iterated until an inadmissible prime or 
some other contradiction is encountered, thus showing that p t N. Treating the 
primes of X in the given order allows those already considered to be used in the 
elimination of subsequent ones. 

We shall illustrate the method by showing that 1093 t N and 151 t N. The com- 
plete proof of Lemma 1 is given in the appendix mentioned in Section 2. Hopefully, 
the nomenclature we use is self-explanatory. We write p* to imply that p is the 
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TABLE 1. Acceptable values of Fr(p) for 3 < p < 106 and r > 7 

p r Fr(p) 

3 7 1093 

3 11 23 3851 

3 13 797161 

3 17 1871 34511 

3 19 1597 363889 

5 7 19531 

7 7 29 4733 

7 11 1123 293459 

11 7 43 45319 

13 11 23 419 859 18041 

19 7 701 . 70841 

43 7 7 5839 158341 

59 7 43 281 757 4691 

67 7 175897 522061 

79 7 281 337 1289 2017 

127 7 7 43 86353 162709 

131 7 127 189967 211093 

191 7 127. 197 10627- 183569 

269 7 43 211 631 2633 25229 

359 7 211 449 1303 4019 4327 

389 7 127. 337. 659 . 827 148933 

431 7 29 . 953 . 967- 1009 . 238267 

2381 7 7 43 2689 3613 72997 853903 

2713 7 292 . 43 . 73361 .258469 581729 

3301 7 292 . 911 . 38669 186733 233941 

3779 7 197. 2311 . 23773 . 455407 591053 

4327 7 7. 3221 . 5503 . 5657. 92401 .101221 

8009 7 7 . 43* 127 . 491 127247. 30587-3 361313 

9719 7 281 . 3067. 8219 19937 30773. 193957 

10889 7 2003 .22093 116341 . 471997 686057 

10949 7 7. 29. 197 547 1009 . 6917. 25523 . 442177 

27457 7 29 . 42463. 65171 . 71261 . 91813 816047 

53831 7 7. 29 . 39341. 104651 . 257489 . 269221 . 420001 

191693 7 7561 11887 14869 16759 89839. 118399 208279 

493397 7 292 127 1163 2129 4229 26041 50177 71359 138349 

special prime. (Of course, two different primes cannot both be special simultane- 
ously.) 

A. 1093 t N. 
A, 1093: F2(1093) = 2 .547; F3(1093) = 3 .398581. 
A, 1093*, 547: F3(547) = 3 163 .613. 
A, 1093*, 547, 613: F3(613) = 3 .7 .17923; F5(613) = 131 .20161 .53551. 
A, 1093*, 547, 613, 17923: F3(17923) = 3 13 31 . 265717. 
A, 1093*, 547, 613, 17923, 265717: 265717 is inadmissible. 
A, 1093*, 547, 613, 20161: 20161 is inadmissible. 
A, 1093, 398581: F2(398581) = 2 17 19 617. 
A, 1093, 398581*, 617: F3(617) = 97 .3931. 
A, 1093, 398581*, 617, 3931: F3(3931) = 3 7 31 . 23743. 
A, 1093, 398581*, 617, 3931, 23743: 23743 is inadmissible. 
B. 151tN. 
B, 151: F3(151) = 3. 7 1093, contradiction to A. 
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4. A RESTRICTION ON THE EXPONENTS IN THE 

PRIME POWER DECOMPOSITION OF N 

Suppose that pa II N and r I (a + 1) where r > 5. Then Fr(p) appears in Table 1 
and, from (7), Fr (p) I N. It follows from Table 1 and Lemma 1 that r = 7 and 
p E {67,79,359,3779,9719,10889,191693}. Referring to Table 1, we see that if 
p 67, then 175897 1 N. Since Fr(175897) is acceptable only for r = 2 and since 
F2(175897) = 2 .37 2377 (and 37 t N from Lemma 1), we conclude that p $ 67. 
Similarly, if p = 79, then 337 N; only F2(337) = 2 132 and F3(337) = 3 43 883 
are acceptable and since neither 13 nor 3 divides N we see that p $ 79. If p = 359, 
then 1303 1 N; only F3(1303) = 3 13 19 2293 is acceptable and 3 t N, so p $ 359. 
If p = 3779, then 455407 1 N; since 455407 is inadmissible, p $ 3779. If p = 9719, 
then 3067 N; since only F3(3067) = 3 127 24697 is acceptable and 3 t N, we see 
that p $ 9719. If p = 10889, then 471997 1 N; but only F2(471997) =2 19 12421 is 
acceptable and 19 t N, so p z 10889. Finally, p z 191693 since otherwise 11887 1 N, 
and 11887 is inadmissible. 

We have proved 

Lemma 2. If pa 11 N and p is not the special prime Po, then a + 1 = 3b 5c where 
b + c >O0. If p0 11 N, then ao + 1 = 2 3b 5c where b + c > 0. 

5. FOUR IMPORTANT SETS 

Let S = {47,53,59, ... } be the set of all primes p such that p 0 1 (mod 3), 
p t 1 (mod 5) and 37 < p < 106. It follows from Lemma 2, (7) and (2) that if 
p E S and p t F2(po), then p t N. (For if p I Fd(pi) and d $ 2 in (7), then either 
3 d and then p- 1(mod 3), or 5 1 d and then p 1 (mod 5); so p ? S.) At 
most one element of S can divide F2(po). For suppose that pi E S and p" 11 N and 
Pi I F2 (po). Then p" F2 (Po), and if two elements of S were divisors of F2 (po) it 
would follow that F2 (po) = po + 1 > 2 . 472 . 532 > 12 106. This is impossible since 
po < 106. Note that po ? S since otherwise 3 1 F2(po), so 3 1 N in contradiction to 
Lemma 1. 

We have proved 

Proposition 1. The number N is divisible by at most one element of S. (If there 
is such an element s, then s $ po and s > 47.) 

Computer searches showed that S has 29451 elements, and 

(8) S* =lp,sP/(P - 1) > 1.6358. 

Let T ={61,151,181,... } be the set of all primes p such that p -1 (mod 15) 
and 37 < p < 106. It follows from Lemma 2, (7) and (4) that if p E T and p $ po, 
thenptN. (For ifpi E T and p2i II N where i > 0, then 3 1 (ai + 1) or 5 1 (ai + 1), 
so that F3(pi) I N and then 3 1 N, or F5(pi) I N and then 5 1 N, either of which 
contradicts Lemma 1.) 

We have proved 

Proposition 2. The number N is divisible by at most one element of T. (If there 
is such an element it is po, and then Po > 61.) 

Computer searches showed that T has 9806 elements, and 

(9) T* = f1p1TP/(P - 1) > 1.1567. 
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Now, let U = {43,73,79, ... } be the set of all primes p such that p 1 (mod 3), 
p 0 1 (mod 5), F5(p) has a prime factor which exceeds 106, and 37 < p < 106. It 
follows from Lemma 2, (7) and (4) that if p E U and p $ po, then p t N. (For if 
pi E U and p, 11 N where i > 0, then 3 1 (ai + 1) and F3(pi) I N and 3 1 N, or 
5 1 (ai + 1) and F5(pi) I N and N has a prime factor which exceeds 106. In either 
case we have a contradiction.) 

We have proved 

Proposition 3. The number N is divisible by at most one element of U. (If there 
is such an element it is po, and then po > 73.) 

Computer searches showed that U has 29115 elements, and 

(10) U* = flpJup/(p- 1) > 1.4919. 

Finally, let V ={1091, 1181,1811,... } be the set of all primes p such that 
p =1 (mod 5), p g 1 (mod 3), F3(p) has a prime factor which exceeds 106, and 
37 < p < 106. If p E V, then p $ po, since 3 1 F2(p), and it follows from Lemma 2, 
(7) and (4) that p t N. 

We have proved 

Proposition 4. The number N is not divisible by any element of V. 

Computer searches showed that V has 6719 elements, and 

(11) V* = flpEvpl(p- 1) > 1.0389. 

Note that S, T, U and V are pairwise disjoint. 

6. THE PROOF OF OUR THEOREM 

There are 78486 primes p such that 37 < p < 106, and 

(12) P* = 41<p<106 p/(p - 1) < 3.6597. 

If pa 11 N, then 1 < a(pa)/pa < p/(p - 1). Since a is a multiplicative function 
and x/(x - 1) is monotonic decreasing for x > 1, it follows from Lemma 1 (using 
here only that p t N for p < 37), Propositions 1, 2, 3, 4 and (7), (8), (9), (10), 
(11), (12) that 

u ) 
U 

P 47 61 P* 

N 1i=1 pi-1 46 60 S*T*U*V* .2963. 

(Note that 47 and 61 appear explicitly due to Propositions 1 and 2.) This contra- 
diction proves our theorem. 

7. SOME DETAILS ON THE SEARCH FOR ACCEPTABLE VALUES OF Fr(p) 

As can be seen from Table 1, if 3 < p < 106 and r > 7, only 35 values of Fr(p) are 
acceptable. (Of course, it follows from (5) that Fr(p) is unacceptable if r > 500000.) 
In establishing this fact it was essential that those Fr (p) be determined which are 
divisible by at least the second power of a prime. The tables to be found in [6] and 
[7] were helpful in this regard, but their ranges were much too narrow for most of 
our searches. 
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Suppose first that 701 < r < 500000 and 102 < p < 106. A computer search 
showed that 

(i) if q < 106, then q3 t Fr(p) except that 31193 11 F1559(146917); 
(ii) there are at most 116 primes q such that q < 106 and q =1 (mod r) (and, 

specifically, there are 116 primes less than 106 and congruent to 1 modulo 
751), except that there are exactly 122 primes less than 106 and congruent 
to 1 modulo 719 (13 of which, including 1439, are less than 105 and 109 of 
which are between 105 and 106). 

Now suppose that r > 701, 102 < p < 106 and all of the prime factors of Fr(p) 
are less than 106. Then, from (5), r < 500000. If r = 719, then Fr(p) > pr-1 > 
(102)718 - 101436; but, from (3), (i) and (ii), F719(p) < 14392((105)2)12((106)2)109 < 
101435. If r $ 719, then Fr(p) > pri- > (102)700 = 101400; but, from (3), (i) 
and (ii), Fr(p) < ((106)2)116 = 101392 (where, in particular, F1559(146917) < 
31193((106)2)56 < 10683, since there are exactly 57 primes less than 106 which 
are congruent to 1 modulo 1559). These contradictions yield 

Proposition 5. If r > 701 and 102 < p < 106, then Fr(p) has a prime factor 
which exceeds 106. 

Next, suppose that 487 < r < 701 and 102 < p < 106. A computer search 
showed that 

(iii) if q < 106, then q3 t Fr(p) and q2 Fr(p) for at most one such q (and a fixed 
value of p); 

(iv) there are at most 163 primes q such that q < 106 and q =1 (mod r) (and, 
specifically, there are 163 primes less than 106 and congruent to 1 modulo 
499). 

Now suppose in addition that all of the prime factors of Fr(p) are less than 106. 
If r > 499, then Fr(p) > pri- > (102)498 = 10996; but, from (3), (iii) and (iv), 
Fr(p) < (106)2(106)162 = 10984. If r = 487 or 491 then, since there are exactly 156 
primes less than 106 and congruent to 1 modulo 487 and exactly 153 primes less 
than 106 and congruent to 1 modulo 491, we see that Fr(p) > (102)486 = 10972 and 
Fr(p) < (106)2(106)155 = 10942. These contradictions prove 

Proposition 6. If 487 < r < 701 and 102 < p < 106, then Fr(p) has a prime 
factor which exceeds 106. 

A slightly more complicated argument yields 

Proposition 7. If 7 < r < 487 and 102 < p < 106, then Fr(p) has a prime factor 
which exceeds 106, except for r = 7 and the values of p (exceeding 102) listed in 
Table 1. 

It remains to consider those Fr (p) for which r > 7 and p < 102. According to 
the table in [6], 489472 11 F24473(17), 472 11 F23(53), 592 11 F29(53), 472 11 F23(71) 
and 48712 11 F487(83); otherwise, if q2 1 Fr(p) where r > 5 and p < 102, then 
q > 106. In each of the five exceptional cases just mentioned, Fr (p) has a prime 
factor which exceeds 106 and is therefore unacceptable. The study of the remaining 
cases, in each of which either Fr(p) is divisible by a prime greater than 106 or Fr (p) 
is squarefree, yields the first 15 entries in Table 1 and no other acceptable values 
of Fr (p). The details of this study are omitted here. 
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8. CONCLUDING REMARKS 

Let Q be the largest prime factor of the odd perfect number N. We have shown 
that Q > 106. A referee has pointed out that our proof could probably be modified 
so as to improve the lower bound on Q from 106 to 107. He/she is undoubtedly 
correct. However, the time and effort to do so seem prohibitive to the present 
authors at the present time for the following reasons. 

Our target of 106 in this paper was largely determined by the fact that a list of all 
78498 primes up to 106 was already available for use in memory in the CYBER 860 
at the Temple University Computing Center. Using the procedures of this paper, to 
show that Q > 107 would necessitate having in memory a list of all 664579 primes 
up to 107. 

Now, let wF(x) denote the number of primes which do not exceed the real num- 
ber x. We have w(106) = 78498 and w(5 105) = 41538. It follows that, in the 
construction of Table 1, 78497 41535 = 3260372895 = P1 values of Fr(p) had 
to be examined for acceptability (taking r < 500000 since otherwise Fr(p) is un- 
acceptable). The searches involved in generating Table 1 of this paper required 
approximately 450 hours of time on the CYBER 860 and perhaps an additional 
250 hours (we did not keep accurate records) of time on a 486 PC. Suppose 
now that the definition of "acceptability" were changed to: "Fr (p) is acceptable 
if every prime divisor of Fr(p) is less than 107." Since w(107) = 664579 and 
T(5 106) = 348513, if Table 1 were now to be regenerated for 3 < p < 107 and 
r > 7, then 664578 348510 = 231612078780 = P2 values of Fr(p) would have to 
be investigated for acceptability. Each such investigation would require at least as 
much time as those undertaken in the present paper. Therefore, since P2/P1 > 71, 
it seems rather conservative to anticipate spending around 30000 hours of time on 
the CYBER 860 in the generation of Table 1 if 6ne wished to prove that Q > 107. 
This estimate is sufficient to discourage the present authors from making such an 
attempt. 

The same referee has also remarked that the contradictory inequality established 
in Section 6 is much stronger than is needed and that our theorem could be proved 
using only the sets S and U. This is true, but we have chosen not to omit the sets 
T and V from consideration since, as the referee says, "the overkill in the inequality 
in Section 6 partially substantiates" his/her (and our) feeling that a higher lower 
bound on Q is achievable by the methods of this paper. 

REFERENCES 

1. A. S. Bang, Taltheoretiske Unders0gelser, Tidsskrift Math. 5, IV (1886), 70-80, 130-137. 
2. M. S. Brandstein, New lower bound for a factor of an odd perfect number, Abstracts of the 

Amer. Math. Soc. 3 (1982), 257. 
3. J. T. Condict, On an Odd Perfect Number's Largest Prime Divisor, Senior Thesis (Middlebury 

College), May 1978. 
4. P. Hagis, Jr. and W. L. McDaniel, On the largest prime divisor of an odd perfect number. 11, 

Math. Comp. 29 (1975), 922-924. MR 51:8021 
5. P. Hagis, Jr. and G. L. Cohen,.Every odd perfect number has a prime factor which exceeds 

106 (with appendix), Research Report No.93-5 (School of Mathematical Sciences, University 
of Technology, Sydney), July 1993. 

6. W. L. McDaniel, On multiple prime divisors of cyclotomic polynomials, Math. Comp. 28 
(1974), 847-850. MR 52:8022 

7. P. L. Montgomery, New solutions of aP-1 = 1 (mod p2), Math. Comp. 61 (1993), 361-363. 
MR 94d:11003 



1330 PETER HAGIS, JR. AND GRAEME L. COHEN 

8. T. Nagell, Introduction to Number Theory, second edition, Chelsea, New York, 1964. MR 
30:4714 

9. I. Niven, Irrational Numbers, Wiley, New York, 1956. MR 18:195c 

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122 

SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TECHNOLOGY, SYDNEY, BROADWAY, 

NSW 2007, AUSTRALIA 

E-mail address: g. cohenQmaths .uts edu. au 


